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Water Transmission in cement paste

« The aim of this work is to differentiate the rate of
water transmission through
— Cracks
— Pores
¥0ss » Capillary Pores (Diameter > 100 A)
sesi « Gel pores (Diameter < 100 A)

e Using the techniques of
— Permeability
— Quasi Elastic Neutron Scattering




Why this study

.. » Cementitious materials are used as barriers to
/2N radioactive wastes

— Rate of transmission of radionuclides depends on
rate of water transmission

 Durability of concrete related inversely to its
ability to transmit fluids.
— Hence an ability to predict future water transmission

gives information on likely service life of concrete
structures

* The service life of a low level repository is
expected to be greater than 300 years

— Tools to demonstrate that this is a likely outcome are
desirable.




Definitions

« Concrete - cementitious materials & aggregate &
sand & water

 Mortar - cementitious materials & sand & water
 Paste - cementitious materials & water

 OPC Ordinary - Portland Cement manufactured
by Blue Circle Southern.

 GGBFS - Ground Granulated Blast Furnace Slag

* Marine Cement —OPC with 60% replaced with
inter-ground GGBFS




Experimental |
Low & medium water pastes & mortars had
similar flow.

 Paste
— Low Water
« W/C 0.32
— Medium Water
Y.~ « W/C 0.42
o — High Water
“.‘;_:;_‘_’ « W/C0.6 &0.8
posecee, e Mortar
— Low Water
| « W/C 0.32

* Binder/Sand 1.2
— Medium Water
« W/C 0.46
* Binder/Sand 1.0




Experimental Il
Shear Mixed and cured 28 days sealed

OPC & Marine

— Mortars Pastes

Mixed in Wearing Blender
Cured 28 days Sealed
Low Medium similar flow

Flow before
shear mixing
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o

0.43 0.44 0.45 0.46
Water to Cement ratio




A’(m2) - the cross section
of the pipette,

A(m?2) area of specimen
h(m) the water head
— h, is the initial level
— h, the final level
L(m) the thickness
t(s) the time

Note can only measure
when K’ > 1*10-12m/s




Effect of Crack Width on Water
Transmission

.I of crack | Length Crack

From the Navier-Stokes equation

It can be shown that

w3= 3mmud? K’/ (pl)

Where w is the width of the crack

L is the crack length

d is the depth of the cylinder

U is the viscosity of water at 20 degrees
P is the density of water

" |s the permeability of the sample

d Depth Cylinder
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Relationship between crack width anc
measured Permeability

Cracks <50um =>
Permeability >10-°m/s
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For pastes (uncracked) it will be the capillary
pores that carry the majority of water

« The capillary pores are the space remaining after
hydration takes place

« Thus they are highest at the start of hydration

« Paste made up
— Un-hydrated cement
— Hydrated cement — gel
— Gel — pores
— Capillary pores
— Pores due to chemical shrinkage (capillary pores)

* Volume at a time depends on the extent of the
paste hydration (a) which varies between 0 and 1




Powers Brownyard Model — Volume o
components depends on a

« Define p the initial porosity of the paste
— depends on density of cement water and w/c

* Vol( chemical shrinkage) = 0.20(1-p) a
. VoI( capillary pores) = p-1.32(1-p) a
Vol( gel pores) = 0.62 (1-p) a
* Vol(gel)=1.52 (1-p) a
Vol( un-hydrated cement) = (1-p) (1-a)

* Relationship depends on assumptions

— e.g that chemically bound water (non-evaporable
water) 0.23 g binds per gram of cement hydrated

— Gel water 0.199g binds per gram of cement hydrated




| So these approximations show that capillary
pore volume decreases with hydration

O - 80 chemical shrinkage pores I

‘ capillary pores

gel water

02-
unhydrated cement I
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Even low w/c pastes
have large capillary pore volumes
- when uncured.

capillary pores
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From work by Powers and his co-worke
also find that capillary pore space is related
to the permeability

* Powers plotted permeability
for pastes at different w/c
ratios

° Pastes were almost fu”y Continous Capillary Pores
saturated

« Pastes with continuous
capillary pores had greater
permeability than indicated
by line.

» After at low pore volume the
capillary pores became
discontinuous and results 00 o1 02 03 04 05
followed the line fractional volume of capillary pores

« The point of imitation of the
discontinuous pores is
indicated.
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Further work by Powers and co-worke
indicated the relationship between curing
time and wi/c ratio

« Pastes cured longer
were less permeable.
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Days Curing (Paste W/C =0.7)

 Pastes made with
greater W/C had
dramatic differences

In permeabllity

Permeability m/s



discontinuous.

« At 7 days the paste with w/c
of 0.45 should have an
approximate degree of
hydration 0.60 and have
acquired a discontinuous
pore structure.

« However this does assume

— Proper Mixing
— Proper Compaction
— Proper Curing

 Furthermore these are
theoretical estimates
e assuming ALL

cements hydrate in the
same manner.

Powers work indicated that with propel
curing at w/c 0.42 the pores should be

W/C = 0.42
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WI/C = 0.42 tyeer

chemical shrinkage pore

capillary pores I
gel water
I

gel solids I
unhydrated cement I
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Pore Water Ratios in 1g of Fully Hydrated
Pastes (1 year old a~0.95) for w/c=0.42

Gel pores < 100A
Amount of water ~ 43%

Cap Pore
> 100A
water ~ 2%

~52% of initial water
Bound CH & C-S-H

Mobile water is in both gel and
capillary pores




Pore Water Ratios in 1g of Fully Hydrated
Pastes (28 day cure a~0.75) for w/c=0.42

Gel pores < 100A
Amount of water ~ 34%

Cap Pore
> 100A

water ~ 25%

~41% of initial water
Bound CH & C-S-H

Mobile water is in the smaller pores




Water Diffusivity can be measured by
QENS

e Bulk water 25*10'19 m? /s
« OPC Paste 12*101° m? /s at AE = 98 peV
« OPC Paste 6*10'°m? /s at AE = 30 peV

QENS Results from

' 1. Bordallo, H.N., Aldridge, L.P., and Desmedt, A. (2006)
Water Dynamics in Hardened Ordinary Portland Cement
Paste or Concrete: From Quasielastic Neutron Scattering.

J. Phys. Chem. C, 110(36), 17966-6.

2. Bordallo, H.N., Aldridge, L.P., Churchman, G.J., Gates, W.P.,
Telling, M.T.F., Kiefer, K., Fouquet, P., Seydel, T., and
Kimber, S.A.J. (2008) Quasi-Elastic Neutron Scattering Studies on Clay
Interlayer-Space Highlighting the Effect of the Cation in Confined
Water Dynamics. J. Phys. Chem. C, 112(36), 13982 - 13991.

3. Aldridge, L.P., Bordallo, H.N., and Desmedt, A. (2004)

dynamics in cement pastes. Physicia B, 350, €565-e568.




QENS — Quasi-Elastic Neutron Scattering

* The signal from H dominates the spectra:
We can “see water”, and the signal from
the rest is very small

* By using the elastic fixed window approach
that is similar to Debye-Waller evolution
obtained from X-rays, we can determine
the temperature where the water starts to
move




Elastic Windows on SPHERES (ns 1ime
scale) define when the water motion is
unlocked!!!
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QENS — Quasi-Elastic Neutron Scattering

* The signal from H dominates the spectra:
We can “see water”

e QENS allows measurements in different
time and length scales — AE (At)

- » We can differentiate between bound water
and “free” water — because they move
differently




AT - ToF Spectrometer at BENSC

multidetector]| 388 single monitor double-trumpet:
chamber| detectors converging/diverging
neutron guide sections

eQ: 04 A1<Q<2.1A!
m_m_| e resolution at elastic
i
peak: AE ~ 98 or 30ueV
mms | @time scale: picosecond

straight housing

diaphragm |diaphragm |neutron with two
system 2 system 1 guide choppers

detector colimatorjsample




Dynamics Model

Oscillation
High Frequency: Isotropic Rotation Jump Translational
g q y
Stretching o |
Rotational Correlation D,
2SYs _ .
<U'=" Debye-Waller Time Translational Diffusion
r T
: J : t
Radius of Gyration = Residence Time

L
Mean Jump Distance

SQ.a@)=¢ " " T(Q 0)®RQ,v)



QENS results from NEAT
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(o] Q=21A"

= | AE=98pev I
[\

removes both glassy and
unbound water. Only

chemically bound water
remains - Er-lzigyTrgnsferO(;rzneV) | |

wl',— No QE broadening after
heating

— Dynamics of chemically
“bound” water molecules
occurs on a timescale
S|gn|f|cantly slower than the

0-second.

AE = 30peV

» S(Q.) (Arbitrary units

. S(Q,®) (Arbitrary units)




QENS of water in paste before and after
heating at 105°C

S(0Q,w) (arbitrary units)

After Heating  After re-hydration

he red line (Representing translational diffusion) is about 5
les narrower on the left hand spectrum




QENS of water in paste
before and after heating at 105°C

« After re-hydration

=====t=== OPC-40°C; w/c=0.6

=B— OPC-40°C;w/c=0.6 re-hydrated
— Similar

* To bulk
— Water




Conclusions

* For well made cementitious based barriers
— Cracking may dominate water transport

— Water transport through capillary pores in
cement paste can be estimated

* At low w/c ratios then water transport
through gel pores should control water
transport




Conclusions — Gel Pores

« Definition of water motion in gel pores is vital to
understand (and measure) the durability in
concrete.

 We need to understand
IPosas — Time scale of diffusion through the gel pores
| — Time scale of diffusion into the gel pores

« \WWe know more than we did when this work was
started

« \We know less than we would like

* We must characterise water motions occurring at
different time scales
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